

nnAudio 0.3.1

Welcome to nnAudio 0.3.1. A big shout out to Miguel Pérez [https://github.com/migperfer] who made this new update possible. Please feel free to check out his github repositories [https://github.com/migperfer] too.

This new version restructured the coding style, making things more modular and pythonic. In terms of functionalities, everything remains the same. In the future releases, nnAudio.Spectrogram will be replaced by nnAudio.features (see also features().)

VQT() is finally avaliable in version 0.3.1 thanks to Hao Hao Tan [https://github.com/gudgud96]!

Quick Start

from nnAudio import features
from scipy.io import wavfile
import torch
sr, song = wavfile.read('./Bach.wav') # Loading your audio
x = song.mean(1) # Converting Stereo to Mono
x = torch.tensor(x, device='cuda:0').float() # casting the array into a PyTorch Tensor

spec_layer = features.STFT(n_fft=2048, freq_bins=None, hop_length=512,
 window='hann', freq_scale='linear', center=True, pad_mode='reflect',
 fmin=50,fmax=11025, sr=sr) # Initializing the model

spec = spec_layer(x) # Feed-forward your waveform to get the spectrogram

nnAudio is an audio processing toolbox using PyTorch convolutional neural
network as its backend. By doing so, spectrograms can be generated from
audio on-the-fly during neural network training and the Fourier kernels
(e.g. or CQT kernels) can be trained.
Kapre [https://github.com/keunwoochoi/kapre] has a similar concept
in which they also use 1D convolutional neural network to extract
spectrograms based on Keras [https://keras.io].

Other GPU audio processing tools are
torchaudio [https://github.com/pytorch/audio] and
tf.signal [https://www.tensorflow.org/api_docs/python/tf/signal].
But they are not using the neural network approach, and hence the
Fourier basis can not be trained. As of PyTorch 1.6.0, torchaudio is
still very difficult to install under the Windows environment due to
sox. nnAudio is a more compatible audio processing tool across
different operating systems since it relies mostly on PyTorch
convolutional neural network. The name of nnAudio comes from
torch.nn.

The implementation details for nnAudio have also been published in IEEE Access, people who are interested can read the paper [https://ieeexplore.ieee.org/document/9174990].

The source code for nnAudio can be found in GitHub [https://github.com/KinWaiCheuk/nnAudio].

Getting Started

	Introduction

	Installation

	Usage

	Speed

	Trainable kernals

	Different CQT versions

Examples

	PyTorch Template for Audio projects

GitHub

	Source Code

	Call for Contribution

Citation

	Citing nnAudio

Indices and tables

	Index

	Module Index

Introduction

nnAudio is basically a GPU version of some of the librosa functions, with additional features such as differentiable and trainable. The figure below shows the spectrograms obtained by nnAudio and librosa using different input signals.

[image: Speed test across different machines]
[image: Speed test across different machines]

Installation

Via PyPI

To install previous releases from pypi: pip install nnAudio==x.x.x, where x.x.x is the version number.
The lastest version might not be always available in PyPI, in this case, please install the lastest version from github.

Via GitHub

To install the lastest version from github, you can do pip install git+https://github.com/KinWaiCheuk/nnAudio.git#subdirectory=Installation.

Alternatively, you can also install from the github manually by the following steps:

	Clone the repository with git clone https://github.com/KinWaiCheuk/nnAudio.git <any path you want to save to>

	cd into the Installation folder where the setup.py is located at

	python setup.py install.

Requirement

Numpy >= 1.14.5

Scipy >= 1.2.0

PyTorch >= 1.6.0 (Griffin-Lim only available after 1.6.0)

Python >= 3.6

librosa = 0.7.0 (Theortically nnAudio depends on librosa. But we only need to use a single function mel from librosa.filters. To save users troubles from installing librosa for this single function, I just copy the chunk of functions corresponding to mel in my code so that nnAudio runs without the need to install librosa)

Usage

Standalone Usage

To use nnAudio, you need to define the spectrogram layer in the same way as a neural network layer.
After that, you can pass a batch of waveform to that layer to obtain the spectrograms.
The input shape should be (batch, len_audio).

from nnAudio import features
from scipy.io import wavfile
import torch
sr, song = wavfile.read('./Bach.wav') # Loading your audio
x = song.mean(1) # Converting Stereo to Mono
x = torch.tensor(x, device='cuda:0').float() # casting the array into a PyTorch Tensor

spec_layer = features.STFT(n_fft=2048, freq_bins=None, hop_length=512,
 window='hann', freq_scale='linear', center=True, pad_mode='reflect',
 fmin=50,fmax=11025, sr=sr) # Initializing the model

spec = spec_layer(x) # Feed-forward your waveform to get the spectrogram

On-the-fly audio processing

By integrating nnAudio inside your neural network, it can be used as on-the-fly spectrogram extracting. Here is one example on how to put nnAudio inside your neural network (highlighted in yellow):

from nnAudio import features
import torch
import torch.nn as nn

class Model(torch.nn.Module):
 def __init__(self, n_fft, output_dim):
 super().__init__()
 self.epsilon=1e-10
 # Getting Mel Spectrogram on the fly
 self.spec_layer = features.STFT(n_fft=n_fft, freq_bins=None,
 hop_length=512, window='hann',
 freq_scale='no', center=True,
 pad_mode='reflect', fmin=50,
 fmax=6000, sr=22050, trainable=False,
 output_format='Magnitude')
 self.n_bins = n_fft//2

 # Creating CNN Layers
 self.CNN_freq_kernel_size=(128,1)
 self.CNN_freq_kernel_stride=(2,1)
 k_out = 128
 k2_out = 256
 self.CNN_freq = nn.Conv2d(1,k_out,
 kernel_size=self.CNN_freq_kernel_size,stride=self.CNN_freq_kernel_stride)
 self.CNN_time = nn.Conv2d(k_out,k2_out,
 kernel_size=(1,3),stride=(1,1))

 self.region_v = 1 + (self.n_bins-self.CNN_freq_kernel_size[0])//self.CNN_freq_kernel_stride[0]
 self.linear = torch.nn.Linear(k2_out*self.region_v, output_dim, bias=False)

 def forward(self,x):
 z = self.spec_layer(x)
 z = torch.log(z+self.epsilon)
 z2 = torch.relu(self.CNN_freq(z.unsqueeze(1)))
 z3 = torch.relu(self.CNN_time(z2)).mean(-1)
 y = self.linear(torch.relu(torch.flatten(z3,1)))
 return torch.sigmoid(y)

After that, your model can take waveforms directly as the input, and extract spectrograms on-the-fly during feedforward.

waveforms = torch.randn(4,44100)
model(waveforms) # automatically convert waveforms into spectrograms

Using GPU

If a GPU is available in your computer, you can use .to(device) method like any other PyTorch nn.Modules
to transfer the spectrogram layer to any device you like.

spec_layer = features.STFT().to(device)

Alternatively, if your features module is used inside your PyTorch model
as in the on-the-fly processing section, then you just need
to simply do net.to(device), where net = Model().

Speed

The speed test is conducted using three different machines, and it shows that nnAudio running on GPU is faster than most of the existing libraries.

	Machine A: Windows Desktop with CPU: Intel Core i7-8700 @ 3.20GHz and GeForce GTX 1070 Ti 8Gb GPU

	Machine B: Linux Desktop with CPU: AMD Ryzen 7 PRO 3700 and 1 GeForce RTX 2080 Ti 11Gb GPU

	Machine C: DGX station with CPU: Intel Xeon E5-2698 v4 @ 2.20GHz and Tesla v100 32Gb GPU

[image: Speed test across different machines]

Trainable kernals

Fourier basis in STFT() can be set trainable by using trainable=True argument. Fourier basis in MelSpectrogram() can be also set trainable by using trainable_STFT=True, and Mel filter banks can be set trainable using trainable_mel=False argument. The same goes for CQT().

The follow demonstrations are avaliable on Google colab.

	Trainable STFT Kernel [https://colab.research.google.com/drive/12VwjKSuXFkXCQd1hr3KUZ2bqzFEe-O6L]

	Trainable Mel Kernel [https://colab.research.google.com/drive/1UtswBYWhVxDNBRDajWzyplZfMiqENCEF]

	Trainable CQT Kernel [https://colab.research.google.com/drive/1coH54dfjAOxEyOjJrqscQRyC0_lmF04s]

The figure below shows the STFT basis before and after training.

[image: Trained_basis]
The figure below shows how is the STFT output affected by the changes in STFT basis. Notice the subtle signal in the background for the trained STFT.

[image: STFT_training]

Different CQT versions

The result for CQT1992 is smoother than CQT2010 and librosa.
Since librosa and CQT2010 are using the same algorithm (downsampling approach as mentioned in this paper),
you can see similar artifacts as a result of downsampling.

For CQT1992v2 and CQT2010v2, the CQT is computed directly in the time domain
without the need of transforming both input waveforms and the CQT kernels to the frequency domain.
making it faster than the original CQT proposed in 1992.

The default CQT in nnAudio is the CQT1992v2 version.
For more detail, please refer to our paper [https://ieeexplore.ieee.org/document/9174990]

All versions of CQT are available for users to choose.
To explicitly choose which CQT to use, you can refer to the CQT API section.

[image: Comparing different versions of CQTs]

PyTorch Template for Audio projects [https://github.com/KinWaiCheuk/pytorch_template]

I am building a pytorch template which allows audio related projects to be quick setup.
This template [https://github.com/KinWaiCheuk/pytorch_template] uses nnAudio to extract spectrograms on-the-fly.

Source Code

The source code for nnAudio is available at github [https://github.com/KinWaiCheuk/nnAudio].

Call for Contribution

nnAudio is a fast-growing package. With the increasing number of feature requests, we welcome anyone who is familiar with digital signal processing and neural network to contribute to nnAudio. The current list of pending features includes:

	Invertible Constant Q Transform (CQT)

	CQT with filter scale factor (see issue #54 [https://github.com/KinWaiCheuk/nnAudio/issues/54])

	Variable Q Transform see VQT [https://www.researchgate.net/publication/274009051_A_Matlab_Toolbox_for_Efficient_Perfect_Reconstruction_Time-Frequency_Transforms_with_Log-Frequency_Resolution])

	Speed and Performance improvements for Griffin-Lim (see issue #41 [https://github.com/KinWaiCheuk/nnAudio/issues/41])

	Data Augmentation (see issue #49 [https://github.com/KinWaiCheuk/nnAudio/issues/49])

(Quick tips for unit test: cd inside Installation folder, then type pytest. You need at least 1931 MiB GPU memory to pass all the unit tests)

Alternatively, you may also contribute by:

	Refactoring the code structure (Now all functions are within the same file, but with the increasing number of features, I think we need to break it down into smaller modules)

	Making a better demonstration code or tutorial

People who are interested in contributing to nnAudio can visit
the github page [https://github.com/KinWaiCheuk/nnAudio] or
contact me via kinwai<underscore>cheuk<at>mymail.sutd.edu.sg.

Citing nnAudio

If you use nnAudio in your research, please feel free to cite our work.

Plain Text

K. W. Cheuk, H. Anderson, K. Agres and D. Herremans,
“nnAudio: An on-the-Fly GPU Audio to Spectrogram Conversion Toolbox Using 1D Convolutional Neural Networks,”
in IEEE Access, vol. 8, pp. 161981-162003, 2020, doi: 10.1109/ACCESS.2020.3019084.

BibTex

@ARTICLE{9174990,
author={K. W. {Cheuk} and H. {Anderson} and K. {Agres} and D. {Herremans}},
journal={IEEE Access},
title={nnAudio: An on-the-Fly GPU Audio to Spectrogram Conversion Toolbox Using 1D Convolutional Neural Networks},
year={2020},
volume={8},
number={},
pages={161981-162003},
doi={10.1109/ACCESS.2020.3019084}}

Link to the paper

The paper for nnAudio is avaliable on IEEE Access [https://ieeexplore.ieee.org/document/9174990]

Index

 nav.xhtml

 Table of Contents

 		
 nnAudio 0.3.1

 		
 Introduction

 		
 Installation

 		
 Via PyPI

 		
 Via GitHub

 		
 Requirement

 		
 Usage

 		
 Standalone Usage

 		
 On-the-fly audio processing

 		
 Using GPU

 		
 Speed

 		
 Trainable kernals

 		
 Different CQT versions

 		
 PyTorch Template for Audio projects

 		
 Source Code

 		
 Call for Contribution

 		
 Citing nnAudio

 		
 Plain Text

 		
 BibTex

 		
 Link to the paper

_images/speedv3.png
Time in seconds
=
o
>

102
103

Time in seconds
=
o
2

(c)

10t

10°

Time in seconds

Machine A (GTX 1070 Ti)

= |ibrosa
W= nnAudio CPU
mmm nnAudio GPU

6.125 7.394

STFT

11.400g 739

0.073

MelSpec

56.561
9.358

CQT2010

Machine A (GTX 1070 Ti)

== nnAudio CPU
=== nnAudio GPU

19.358

I 0.783

CQT2010

2371

0.096

CQT2010v2

98.887

0.031

CQT1992v2

Machine A (GTX 1070 Ti)

0.611
I 0.064

STFT

1851

0.557

MeISpec

0.073

Kapre GPU

tf signal GPU
torchaudio GPU
nnAudio GPU

CQT2010

II0 783

Machine B (RTX 2080 Ti)

= |ibrosa
W= nnAudio CPU
mm nnAudio GPU

4.183 3.810 8282 4611 7:248
0.378
0 018
0 008

STFT MelSpec CQT2010

39.864

Machine B (RTX 2080 Ti)

mmm nnAudio CPU
= nnAudio GPU

7.948

2.654
0.378
0.049
0.008
CQT2010 CQT2010v2 CQT1992v2
Machine B (RTX 2080 Ti)
== Kapre GPU
= tf signal GPU
dap., I e
oos7 0.079
0.018
0.008 I
I I Y

STFT CQT2010

MelSpec

Machine C (Tesla v100)

= |ibrosa
W= nnAudio CPU

mm nnAudio GPU 18.266
10.644 7.101
3.981 3.748
0.258
0 015
0 001

STFT MelSpec CQT2010

103.398

Machine C (Tesla v100)

mmm nnAudio CPU
= nnAudio GPU

7.101
0.258
I 0.091
0.001
——
CQT2010 CQT2010v2 CQT1992v2
Machine C (Tesla v100)
= Kapre GPU
188 = tf signal GPU
o 08791024 = torchaudio GPU
== nnAudio GPU 0.258
0.042
0.015
00010001

STFT

MelSpec CQT2010

_images/performance_1.png
Linear Sine Sweep

nnAudio LinSpec librosa

1000

800

600

400

200

1000
800
600

N.A.

400

200

MelSpec

Logarithmic Sine Sweep

nnAudio LinSpec librosa

1000

800

600

400

200

0 10 20 30 40 50 60 70 80 0 10 20 30 40 50 60

N.A.

MelSpec

_images/performance_2.png
Dirac Delta Impulse Piano Chromatic Scale
Gl g Lyl 4
"'MW' W\\ W :‘\W;M’m

nnAudio LinSpec librosa nnAudio LinSpec librosa

1000

0 200 400 600 800 1000 1200 1400 1600 0 200 400 600 800 1000 1200 1400 1600

LogSpec

1000

N.A.

200 400 600 800 1000 1200 1400 1600

MelSpec MelSpec

0 200 400 600 800 1000 1200 1400 1600

200 400 600 800 1000 1200 1400 1600

car

0
0 200 400 600 800 1000 1200 1400 1600 0 200 400 600 800 1000 1200 1400 1600

_static/logo.png
D
)

Ll

C)
)
o

N

s o
MinAuee

_static/minus.png

_static/file.png

_static/plus.png

_images/CQT_compare.png
200

150

100

50

_images/STFT_training.png
Original STFT Trained STFT

_images/Trained_basis.png
os

Original Fourier Kernels

Trained Fourier Kernels

os — imaginary
00
05
-10
0 10 220 30 4 50 6 0 10 220 30 4 50 6
10
— ral
— imaginary
os
00
05
-10
0 10 220 30 4 50 6 0 10 220 30 4 50 6
10
— ral
— imaginary
os
00
05
-10
0 10 220 30 4 50 6 0 10 220 30 4 50 6
10 — ral
— imaginary
os
00
05
-10
0 10 220 30 4 50 6 0 10 220 30 4 50 6
10
— ral
— imaginary
os
00
05
-10

0 220 0 4O 0 6

0 220 0 4O 0 60

